
SECURITY REVIEW

REPORT FOR

FUEL

june.24

Contents

2

� About Hexens

� Executive summary

� Overview

� Scope

� Auditing details

� Severity structure

� Severity characteristics

� Issue symbolic codes

� Findings summary

� Weaknesses

� PreDeposits doesn't support tokens with amount changes
in transfer�

� Permit deposit doesn't save the depositParam argument
to storag�

� Permit deposit can be DoS'e�
� Enable withdrawals to other addresse�
� The migrate function is not implemented

ABOUT HEXENS

Hexens

Hexens

Infrastructure Audits, Zero Knowledge Proofs / Novel Cryptography, DeFi and
NFTs

 is a cybersecurity company that strives to elevate the standards of
security in Web 3.0, create a safer environment for users, and ensure mass
Web 3.0 adoption.

 has multiple top-notch auditing teams specialized in different fields
of information security, showing extreme performance in the most
challenging and technically complex tasks, including but not limited to:

. Hexens not only uses widely known methodologies and flows, but
focuses on discovering and introducing new ones on a day-to-day basis.

In 2022, our team announced the closure of a $4.2 million seed round led by
IOSG Ventures, the leading Web 3.0 venture capital. Other investors include
Delta Blockchain Fund, Chapter One, Hash Capital, ImToken Ventures, Tenzor
Capital, and angels from Polygon and other blockchain projects.

Since Hexens was founded in 2021, it has had an impressive track record
and recognition in the industry: Mudit Gupta - CISO of Polygon Technology -
the biggest EVM Ecosystem, joined the company advisory board after
completing just a single cooperation iteration. Polygon Technology, 1inch,
Lido, Hats Finance, Quickswap, Layerswap, 4K, RociFi, as well as dozens of
DeFi protocols and bridges, have already become our customers and taken
proactive measures towards protecting their assets.

3

EXECUTIVE SUMMARY

OVERVIEW

This audit covered the Predeposit smart contract as developed by Fuel
Labs.

Our security assessment was a full review of the smart contract, spanning a
total of 3 days.

During our audit, we have identified 2 medium severity vulnerabilities,
various minor vulnerabilities and code optimisations.

Finally, all of our reported issues were fixed or acknowledged by the
development team and consequently validated by us.

We can confidently say that the overall security and code quality have
increased after completion of our audit.

4

SCOPE

The analyzed resources are located on:

The issues described in this report were fixed in the following commit:

https://github.com/FuelLabs/predeposit-contracts/
tree/6c71bdc76c1b291e2e2565648a333c1603375e81

https://github.com/FuelLabs/predeposit-contracts/
tree/6d2b80a4579065d240d920af8f0006d54d620c03

5

https://github.com/FuelLabs/predeposit-contracts/tree/6c71bdc76c1b291e2e2565648a333c1603375e81
https://github.com/FuelLabs/predeposit-contracts/tree/6c71bdc76c1b291e2e2565648a333c1603375e81
https://github.com/FuelLabs/predeposit-contracts/tree/6d2b80a4579065d240d920af8f0006d54d620c03
https://github.com/FuelLabs/predeposit-contracts/tree/6d2b80a4579065d240d920af8f0006d54d620c03

auditing details

6

KASPER

ZWIJSEN

Review
Led by

Head of Audits | Hexens

started
10.06.2024

delivered
12.06.2024

HEXENS METHODOLOGY
Hexens methodology involves 2 teams, including multiple auditors of
different seniority, with at least 5 security engineers. This unique cross-
checking mechanism helps us provide the best quality in the market.

Seniors Seniors

Team [1] Team [2]

Middle

Junior

Review Middle

Junior

severity structure

The vulnerability severity is calculated based on two component�

� Impact of the vulnerabilit�
� Probability of the vulnerability

Impact

Low/Info

Medium

High

Critical

Probability

rare unlikely likely very likely

Low/Info Low/Info Medium Medium

Low/Info Medium Medium High

Medium Medium High Critical

Medium High Critical Critical

SEVERITY CHARACTERISTICS

Smart contract vulnerabilities can range in severity and impact, and it's
important to understand their level of severity in order to prioritize their
resolution. Here are the different types of severity levels of smart contract
vulnerabilities:

Critical

Vulnerabilities with this level of severity can result in significant financial
losses or reputational damage. They often allow an attacker to gain
complete control of a contract, directly steal or freeze funds from the
contract or users, or permanently block the functionality of a protocol.
Examples include infinite mints and governance manipulation.

7

8

High

Vulnerabilities with this level of severity can result in some financial losses
or reputational damage. They often allow an attacker to directly steal yield
from the contract or users, or temporarily freeze funds. Examples include
inadequate access control integer overflow/underflow, or logic bugs.

Medium

Vulnerabilities with this level of severity can result in some damage to the
protocol or users, without profit for the attacker. They often allow an attacker
to exploit a contract to cause harm, but the impact may be limited, such as
temporarily blocking the functionality of the protocol. Examples include
uninitialized storage pointers and failure to check external calls.

Low

Vulnerabilities with this level of severity may not result in financial losses or
significant harm. They may, however, impact the usability or reliability of a
contract. Examples include slippage and front-running, or minor logic bugs.

Informational

Vulnerabilities with this level of severity are regarding gas optimizations and
code style. They often involve issues with documentation, incorrect usage
of EIP standards, best practices for saving gas, or the overall design of a
contract. Examples include not conforming to ERC20, or disagreement
between documentation and code.

issue symbolic codes

Every issue being identified and validated has its unique symbolic code
assigned to the issue at the security research stage. Cause of the
vulnerability reporting flow design, some of the rejected issues could be
missing.

findings SUMMARY

9

Critical 0

High 0

Medium 2

Low 1

Informational 2

Total: 5

Severity Number of Findings

Medium

Low

Informational

Fixed

Acknowledged

WEAKNESSES
This section contains the list of discovered weaknesses.

FUEL4-1

PreDeposits doesn't support
tokens with amount changes in
transfers

SEVERITY: Medium

REMEDIATION:

Use the difference between balances before and after the transfers.

STATUS: Acknowledged

DESCRIPTION:

The deposit() and depositWithPermit() functions will put an incorrect
amount of tokens into the balances mapping if the transfer amount
changes during the token calls (like in fee-on-transfer tokens).

This will lead to other users losing funds on the withdraw() call.

contracts/PreDeposits/PreDeposits.sol:L65

10

contracts/PreDeposits/PreDeposits.sol:L90

	 (). ((), (),);IERC20 safeTransferFrom _msgSender addresstoken amountthis

	 (). ((), (),);IERC20 safeTransferFrom _msgSender addresstoken amountthis

FUEL4-3

Permit deposit doesn't save the
depositParam argument to
storage

SEVERITY: Medium

PATH:

contracts/PreDeposits/PreDeposits.sol:L69-L92

REMEDIATION:

Add the update to the function.

STATUS: Fixed

DESCRIPTION:

The function accepts and emits the depositParam argument in the
Deposit event but doesn’t actually update it in the storage deposits
mapping.

You can see the update in the twin deposit() function:

contracts/PreDeposits/PreDeposits.sol:L62-L63

 _tokenDeposit.depositParam = depositParam;

 deposits[()][token] = _tokenDeposit;_msgSender

11

function

external

this

this

 (

	 ,

	 ,

	 ,

	 ,

	 ,

	 ,

	

) {

	deposits[()][token].balance += amount;

	 (token). (

		 (),

		 (),

		amount,

		deadline,

		v,

		r,

		s

);

	 (token). ((), (), amount);

	 ((), token, amount, depositParam);

}

depositWithPermit

whenNotPaused

_msgSender

ERC20Permit permit

_msgSender

IERC20 safeTransferFrom _msgSender

Deposit _msgSender

address

uint240

uint16

uint256

uint8

bytes32

bytes32

address

address

token

amount

depositParam

deadline

v

r

s

emit

12

FUEL4-2

Permit deposit can be DoS'ed

SEVERITY: Low

PATH:

contracts/PreDeposits/PreDeposits.sol::depositWithPermit():L69-L92

REMEDIATION:

Consider adding try/cath, or if block, so if the permit() is already called, just
check the allowance of msg.sender and skip the call to permit().

STATUS: Fixed

DESCRIPTION:

The PreDeposits.sol::depositWithPermit() function currently utilizes an
inner call to the permit() function of the openzeppelin/contracts/token/
ERC20/extensions/ERC20Permit.sol. However, this flow exposes
depositWithPermit() to a griefing attack, where an attacker can forcibly
block the victim's transaction. 
The attack proceeds as follows: the attacker front-runs the victim's
transaction, extracts the parameters from the mempool, and places a
transaction that directly calls ERC20Permit(token).permit() with the
victim's params. Consequently, the victim's transaction reverts since the
signature has already been used for permit() in the attacker's transaction.

13

 (

 ,

 ,

 ,

 ,

 ,

 ,

) {

 deposits[()][token].balance += amount;

 (token). (

 (),

 (),

 amount,

 deadline,

 v,

 r,

 s

);

 (token). ((), (), amount);

 ((), token, amount, depositParam);

 }

function

external

this

this

depositWithPermit

whenNotPaused

_msgSender

ERC20Permit permit

_msgSender

IERC20 safeTransferFrom _msgSender

Deposit _msgSender

address

uint240

uint16

uint256

uint8

bytes32

bytes32

address

address

token

amount

depositParam

deadline

v

r

s

emit

14

FUEL4-4

Enable withdrawals to other
addresses

SEVERITY: Informational

PATH:

contracts/PreDeposits/PreDeposits.sol::withdraw()#L95-L111

REMEDIATION:

Add address recipient to the withdraw() function.

STATUS: Fixed

DESCRIPTION:

The current implementation of the PreDeposits.sol contract restricts
withdrawals to the sender's address. This limitation can be restrictive for
users who might want to withdraw their funds to a different address. Allowing
withdrawals to other addresses can offer flexibility and convenience to
users, facilitating smoother fund management and better user experience.

15

 (,)
{

 deposits[()][token].balance =

 deposits[()][token].balance -

 amount;

 (token == ()) {

 (success,) = ().call{ value: amount }();

 (!success) {

 ();

 }

 } {

 (token). ((), amount);

 }

 ((), token, amount);

 }

function externalwithdraw whenNotPaused

_msgSender

_msgSender

_msgSender

RecipientRevert

IERC20 safeTransfer _msgSender

Withdraw _msgSender

address uint240

address

bool

token amount

// Underflow checks already in effect with new solidity versions

if

if

revert

else

emit

0

""

16

FUEL4-5

The migrate function is not
implemented

SEVERITY: Informational

PATH:

contracts/PreDeposits/PreDeposits.sol::migrate():L134-L140

REMEDIATION:

Consider implementing the migrate() function.

STATUS: Acknowledged

DESCRIPTION:

The migrate() function is typically used for migration management. However,
in this case, it is not implemented and will always revert.

17

 (

 ,

 ,

) {

 ();

 }

function

calldata

external view

migrate

whenNotPaused

address

address

bytes

/*token*/

/*migrationFacilitator*/

/*facilitatorData*/

revert "UNIMPLEMENTED"

